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Abstract

This work is dedicated to an experimental study of residence time distributions (RTD) of a pseudoplastic fluid in different configurations of
helically coiled or chaotic systems. The experimental system is made up of a succession of bends in which centrifugal force generates a pair of
streamwise Dean cells. Fluid particle trajectories become chaotic through a geometrical perturbation obtained by rotating the curvature plane of
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ach bend of ±90◦ with respect to the neighboring ones (alternated or twisted curved ducts). Different numbers of bends, ranging from 3 to 33,
ere tested. RTD is experimentally obtained by using a two-measurement-point conductimetric method, the concentration of the injected tracer
eing determined both at the inlet and at the outlet of the device. The experimental RTD is modeled by a plug flow with axial dispersion volume
xchanging mass with a stagnant zone. RTD experiments were conducted for generalized Reynolds numbers varying from 30 to 270. The Péclet
umber based on the diameter of the pipe is found to increase with the Reynolds number whatever the number of bends in the system. This
eduction in axial dispersion is due to both the secondary Dean flow and the chaotic trajectories. Globally, the flowing fraction, which is one of the
haracteristic parameters of the model, increases with the Reynolds number, whatever the number of bends, to reach a maximum value ranging
rom 90% to 100%. For Reynolds numbers less than 200, the flowing fraction increases with the number of bends. The stagnant zone models fluid
articles located close to the tube wall. The pathlines become progressively chaotic in small zones in the cross section and then spread across the
ow as the number of bends is increased, allowing more trapped particles to move towards the tube center. Results have been compared with those
reviously obtained using Newtonian fluids. The values of the Péclet number are greater for the pseudoplastic fluid, the local change of apparent
iscosity affecting the secondary flow. For pseudoplastic fluids, the apparent viscosity is lower near the wall and higher at the center of the cross
ection. The maximum axial velocity is flattened as the flow behavior index is reduced, inducing a decrease of the secondary flow in the central
art of the pipe and an acceleration of it near the wall, which reduces the axial dispersion. These results are encouraging for the use of this system
s continuous mixer for complex fluids in laminar regime, particularly for small Reynolds numbers.

2006 Elsevier B.V. All rights reserved.

eywords: Residence time distribution; Dispersion; Pseudoplastic fluid; Helical coil; Chaotic flow

. Introduction and literature survey

In continuous processes, many investigations are dedicated
o the dispersion phenomenon in various systems in order to
omogenize the residence time distribution, to increase mix-
ng in order to minimize the temperature gradients in heating
ystems or to enhance the conversion rate in chemical reactors.

∗ Corresponding author. Tel.: +33 2 40 17 81 92; fax: +33 2 40 17 81 84.
E-mail address: patrick.legentilhomme@univ-nantes.fr

P. Legentilhomme).

Flow in straight tubes has been studied for a long time, notably
by Taylor [1]. Techniques commonly used to enhance mixing
often involve the generation of turbulent flows. In some cases,
fluids with long molecular chains can be damaged by high shear
stresses and turbulent mixing is also energy consuming. Further-
more, in many processes, it is very difficult to reach a turbulent
flow regime due to the high apparent viscosity of certain viscous
and/or non-Newtonian fluids.

In the laminar regime, for example in a straight tube, mix-
ing is mainly driven by molecular diffusion. However, different
mechanisms can induce a decrease of the axial dispersion. Some
devices allow to improve mixing efficiency, such as static mix-
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Nomenclature

C concentration of an injected tracer (mol m−3)
Cf friction factor
C1(t) concentration of an injected tracer at the inlet

(mol m−3)
C2(t) concentration of an injected tracer at the outlet

(mol m−3)
C2calc(t) calculated concentration of an injected tracer at

the outlet (mol m−3)
C′

1(t) normalized concentration of an injected tracer at
the inlet

C′
2(t) normalized concentration of an injected tracer at

the outlet
C* concentration of an injected tracer in the stagnant

zone (mol m−3)
D tube diameter (m)
Dn Dean number, Dn = Re

√
D/Rc

Dax axial dispersion coefficient (m2 s−1)
Dc coil diameter (m)
Dng generalized Dean number, Dng = Reg

√
D/Rc

f fraction of volume subjected to flow
F(s) transfer function
G dimensionless group, G = (KL)/W̄
k consistency index (Pa sn)
K mass transfer coefficient between the flowing vol-

ume and the stagnant region (s−1)
L total length of the system (m)
n flow behavior index
P pressure (Pa)
PeD Péclet number based on the diameter of the sys-

tem, PeD = (W̄D)/Dax
PeL Péclet number based on the total length of the

system, PeL = (W̄L)/Dax
Re Reynolds number, Re = (W̄D)/ν
RMS root mean square error between the experimental

and the calculated response curves (%)
Rc mean curvature radius (m)
Reg generalized Reynolds number, Reg =

81−n[4n/(3n + 1)]n[(ρW̄2−nDn)/k]
t time (s)
t̄s mean residence time (s)
W̄ average axial velocity (m s−1)

Greek symbols
β dimensionless number, β = Pe2

L + 4sγPeL t̄s
γ dimensionless number, γ = f + [(G(1 −

f ))/(t̄ss(1 − f ) + G)]
µ dynamic viscosity (Pa s)
ν kinematic viscosity (m2 s−1)
ξ dimensionless geometrical parameter
ρ fluid density (kg m−3)
τw wall shear stress (Pa)
ω pulsation of the Fourier series (rad s−1)

ers or helical ones for instance. For very viscous fluids, static
mixers can induce prohibitive pressure drops.

In helical systems, mixing of Newtonian fluids has been
the subject of many investigations. Dispersion processes are
often investigated, both theoretically and experimentally, using
the concept of residence time distribution (RTD). For helical
systems, in laminar flow, the presence of two contra-rotative
vortices called Dean cells [2,3] due to the centrifugal force,
increases transverse mixing and makes concentration distribu-
tion in the cross-sectional plane more uniform. Consequently,
the axial dispersion is reduced. Erdogan and Chatwin [4] car-
ried out a theoretical analysis of the effective dispersion in a
curved duct using the velocity field determined by Dean [2,3].
They expressed the effective dispersion coefficient, Deff, as the
sum of a curvature-independent term, representing the solution
obtained by Taylor [1] in a straight tube, and an additional one
taking into account the curvature effects. From the works of
Erdogan and Chatwin [4], it can be seen that Deff is reduced
by curvature effects only if the Schmidt number, Sc, is greater
than 0.57, which is the case for all common liquids and most
gases. Erdogan and Chatwin [4] conclude that the secondary
flow induces a transverse mixing helping molecular diffusion in
the mixing process. In this system, the mass transport perpendic-
ular to the main flow is driven by both molecular diffusion and
advection. The modification of the axial velocity profile due to
the secondary flow induces a narrower residence time distribu-
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ion compared with that obtained in a straight tube. Ruthven [5]
erived a theoretical residence time distribution for ideal lami-
ar flow through a helical tube when molecular diffusion can be
eglected. He showed that, when the flow pattern is fully devel-
ped and for Re ≤ L/D ≤ 1.5Re and Dn ≤ 17, the RTD becomes
lmost independent of curvature and Reynolds number and that,
or a helical tube, the RTD curve is qualitatively similar, but
arrower, than for a straight pipe. A few years later, Nauman
6] carried out a more detailed theoretical investigation of RTD
n curved pipes, taking into account the incidence of molec-
lar diffusion on the dispersion process; he showed that RTD
urves exhibit a slowly converging tail, such as that computed
y Ruthven [5]. Janssen [7] numerically studied longitudinal
ispersion in laminar flow in helically coiled tubes in such condi-
ions that molecular diffusion plays a dominating role. For Dean
umbers, Dn, smaller than 16, the ratio between the dispersion
oefficient in coils and in straight pipes is given as a function
f the dimensionless group Dn2Sc for coil-pipe diameter ratios
reater than 20. Using Monte-Carlo statistical simulation and
umerical methods to solve the dispersion equation, Johnson
nd Kamm [8] evaluated Taylor dispersion in a curved duct for
ow Dean numbers (Dn ≤ 17) and curvature ratios less than 0.02
sing Dean velocity profiles [2,3]. Janssen [7] and Johnson and
amm [8] confirmed that Dn2Sc is in fact the appropriate param-

ter to discriminate between the different dispersion processes.
or Dn2Sc less than 100, molecular diffusion drives the transport

n the cross-sectional plane and Deff remains the same as that
btained in straight pipes. When Dn2Sc increases, secondary
ow effects dominate, inducing a decrease in Deff.

Trivedi and Vasudeva [9] reported an experimental study on
esidence time distribution in the low-Reynolds number and low-
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Dean number region (Dn ≤ 11) in helical coils having curvature
ratios, Rc/D, ranging from 10.5 to 278. In these configurations,
they obtained an essentially unique RTD curve which is narrower
than that for straight ducts, confirming the theoretical results
of Ruthven [5]. Trivedi and Vasudeva [10] complemented their
previous experimental study by investigating the incidence of
molecular diffusion for Schmidt numbers varying from 1500 to
8700, using the same coils as previously [9]. Depending on cur-
vature ratio and Reynolds number, a 1.5- to 500-fold reduction in
axial dispersion was observed compared with that in a straight
tube; this reduction was enhanced by an increase in Schmidt
number. Looking closely at the experimental data of Trivedi and
Vasudeva [9], Saxena and Nigam [11] showed that a unique RTD
was not really obtained, but rather a gradual narrowing of RTD
curves with an increase in Dean number. Saxena and Nigam [11]
argued that, starting with coils having large curvature ratios and
for low Reynolds numbers, the RTD should shift from that for
straight ducts to that for helical coils. To validate this assump-
tion, they conducted a set of experiments using three coils with
curvature ratios equal to 5.25, 113.15 and 332.8 and Dean num-
bers varying from 0.01 to 6.

In fact, two competing mechanisms of dispersion are present
in helically coiled systems: (i) a dislocation, to the outer wall,
of the maximum of the velocity profile (asymmetric profile) due
to the curvature effects which increases the spread of residence
time distribution; (ii) the secondary flow (Dean-roll cells) gen-
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with the reactor length and with the residence time. This dis-
persion is reduced when the flow rate increases. However, since
the trajectories in the secondary flow generated by Dean cells
constitute an integrable system (in term of dynamical systems),
a fluid particle always remains on a unique streamline and can
change its trajectory only by means of molecular diffusion (a
phenomenon called “regular mixing” hereafter).

Because of the integrability of the trajectories, two different
laminar mixing regimes can exist: (i) regular mixing, for which
the pathlines are integrable over the whole geometry. The flow
in a helically coiled tube, in which a pair of secondary flow vor-
tices with closed streamlines is formed under curvature effects,
is of this kind; (ii) chaotic mixing, also called “irregular mix-
ing”, in which pathlines are non-integrable and induce chaotic
trajectories of fluid particles.

The flow regime associated with the latter case, frequently
called chaotic advection, presents mixing properties comparable
to those inherent to turbulent flow. The use of chaotic advection
by introducing a geometrical perturbation between bends allows
to a particle to follow a chaotic trajectory and consequently to
move in the whole transversal section. Chaotic advection can
appear for small Reynolds numbers and assists molecular diffu-
sion in transverse mixing, thus decreasing the axial dispersion
below its value for integrable system. These properties present
a significant advantage for the mixing of very viscous or frag-
ile fluids for which turbulence generation can cause damages
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rates a transverse mixing that decreases axial dispersion. The
elative balance between these two competing actions depends
n the Reynolds number, since the effective dispersion first
ncreases and then decreases with increasing Re. Nunge et al.
12] treated dispersion analytically using the velocity distribu-
ion of Topakoglu [13] in curved pipes. They showed that, for
mall Reynolds numbers, the effective dispersion may be sub-
tantially increased by curvature effects, though it remains of the
ame order of magnitude as that in the straight pipe. They also
bserved, for laminar flow in helical systems that the effective
xial dispersion decreases with an increase in Re due to the sec-
ndary flow. However, a transition occurs for Reynolds numbers
reater than 3000, for which the strength of the secondary flow
ecomes less important than axial velocity effects, especially for
elical systems with small curvature, thus inducing an increase
f the effective dispersion [14]. For still higher Reynolds num-
ers, the turbulent regime prevails and axial dispersion is reduced
y turbulent mixing. Castelain et al. [15] compared axial disper-
ion in a helical system with that obtained in a straight pipe
or Reynolds numbers greater than 2000 (turbulent flow). They
howed that the effective dispersion in a helically coiled system
n the laminar flow regime (Re < 8000) is of the same order of

agnitude as that observed in a straight tube in turbulent flow
egime. All experimental studies, notably those of Castelain et
l. [15] in helical configuration, emphasize a narrowing of the
esidence time distribution compared with that in a straight tube.
his conclusion was also confirmed by the numerical simulation
f Castelain et al. [16]. Narusawa and Myamae [17] numeri-
ally investigated the relation between the flow parameters (tube
ength, hydraulic diameter, velocity flow) and the axial disper-
ion in a helix. They concluded that axial dispersion increases
nd increase pumping costs due to pressure drops. The idea of
enerating a spatial (Lagrangian) chaotic behavior from a deter-
inistic flow by simple geometrical perturbations has attracted
uch attention in recent years [18–20], mainly because of its

otential application in mixing devices [21–23]. The geomet-
ical perturbation induces complex three-dimensional chaotic
rajectories in which particles can visit a large number of posi-
ions in physical space. To generate chaotic flow paths, the
echnique involved hereafter exploits the secondary flow pat-
erns, usually known as Dean cells [20]. By shifting the plane
f curvature of each successive bends, one can induce a class
f trajectories in one bend, then deform it to another type in the
ext bend, and so on. Very complex flow paths can be produced
his way, and a fluid particle undergoing such flows follows a
haotic path. The nature of the flow regime depends on the fol-
owing conditions: (i) the angular extension of the bend; (ii) the
ngle between the planes of curvature of two successive bends;
iii) the global rotation protocol and finally; (iv) the Dean num-
er. For instance, when the geometrical perturbation remains
mall, some streamlines are confined in streamtubes where the
ow remains regular, whereas other trajectories become chaotic;

his is the mixed regime. If the whole trajectories become non-
ntegrable, the flow is called fully chaotic.

In previous works, Castelain et al. [15,16] compared RTD
n helically coiled and chaotic twisted pipes for Reynolds num-
ers ranging from 30 to 13,000, for different bend numbers,
sing Newtonian fluids. Water was used as the working liquid
or Reynolds numbers greater than 800 and two saccharose solu-
ions for Reynolds numbers ranging from 30 to 1700. In order to
nvestigate the dispersion phenomenon in the two experimental
rrangements, Castelain et al. [15,16] used the axial dispersion
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plug flow model. For Reynolds numbers larger than 2500, axial
dispersion in the chaotic system is more than 20% smaller than
in a helically coiled tube having the same number of bends. The
decrease in axial dispersion is due to the generation of chaotic
trajectories, which also contributes to an increase in transverse
dispersion. Chaotic advection helps molecular diffusion in the
transverse mixing and reduces axial dispersion. This reduction
is due to chaotic trajectories which allow the particles to sample
more quickly the axial velocity profile. For smaller Reynolds
numbers, the fitting between the plug flow with axial dispersion
model and the experimental RTD curves was not satisfactory,
mainly due to the long tails appearing on the experimental RTDs.
Thus, for Reynolds numbers less than 2500, the experimental
RTD of a Newtonian fluid was modeled using a plug flow with
axial dispersion part exchanging mass with a stagnant region and
the axial dispersion was less important in chaotic configuration
too. Saxena et al. [24] measured the residence time in a laminar
flow to characterize the performances of various mixers configu-
rations with different bend shifts. For Reynolds numbers varying
from 30 to 150, they showed that the residence time distribution
is very sensitive to the rotation protocol, the best results being
obtained for a 90◦ angle shift between two successive bends.

Most of the studies dealing with mixing characterization in
helical configurations are dedicated to Newtonian fluid flows.
The few works carried out using non-Newtonian fluids are only
concerned with the helical configuration. Singh and Nigam [25]
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discussion of the experimental data and the comparison with the
results obtained for Newtonian fluids.

2. Experimental apparatus and methods

2.1. Flow loop

The experimental flow loop, previously described in Caste-
lain et al. [15,16] consists of an overhead reservoir from which
the working fluid is circulated by means of a helical shaft pump.
The flow rate is measured by an electromagnetic flowmeter, with
an accuracy of ±1.5 % over the whole flow range. Before enter-
ing the chaotic or the helically coiled system, the liquid flows
through a straight pipe 3 m long, more than 65 times the inner
diameter of the curved tubes, ensuring a fully developed axial
flow at the inlet of the test section for the range of Reynolds
numbers under investigation (30 ≤ Re ≤ 270).

The helical and chaotic mixers are both made of identical
bends. Each bend consists of a 90◦ curved stainless-steel tube
of circular cross section, the inner and outer radii of which are
23 and 25 mm, respectively. The mean radius of curvature of
the bends is 126.5 mm, which yields a mean curvature ratio of
0.18. The bends can be assembled so as either to form a helically
coiled pipe or to generate chaotic pathlines. The complete helical
system consists of 33 bends, connected by 16 straight sections
of 55 mm length (Fig. 1a). The chaotic twisted pipe device is

Fig. 1. The two systems under study : (a) helically coiled tube; (b) chaotic
configuration.
ave measured the RTD in two helical mixers of same length
ut with different curvature aspect ratios. The used pseudo-
lastic fluids were aqueous solutions with carboxymethyl cel-
ulose (CMC) concentrations of 1% and 2% in weight. RTD
as obtained by means of a colored tracer (Congo red dye)
etected by colorimetry for generalized Reynolds numbers vary-
ng between 0.01 and 2.5. For non-Newtonian fluids, the gen-
ralized Reynolds number is defined in such a way that the
elation between the friction factor and the Reynolds number
or laminar isothermal flow of Newtonian fluids is the same as
or non-Newtonian fluids [26]. The experimental data of Singh
nd Nigam [25] have been correctly modeled using the plug flow
ith axial dispersion model for pseudoplastic fluids in helical

ystems. Saxena et al. [24] numerically observed a narrowing
f the residence time distribution in a helical system with the
ecrease of the flow behavior index of a pseudoplastic fluid
0.2 ≤ n ≤ 2). They experimentally verified their results using
ve different CMC solutions (0.6 ≤ n ≤ 1) for Reynolds numbers
xtending from 0.1 to 140. The same results were also numeri-
ally obtained by Ranade and Ulbrecht [27] for n ranging from
.2 to 1.5.

The present work describes an experimental study of res-
dence time distributions (RTD) of a pseudoplastic fluid for
ifferent configurations of a helically coiled system and a chaotic
ne based on alternated curved ducts for generalized Reynolds
umbers varying between 30 and 260. In order to investigate
ispersion in the two experimental arrangements, we used the
xial dispersion model exchanging mass with a stagnant zone.
he experimental apparatus and methods are described in the
ext section. The third section covers the modeling of the exper-
mental RTD, while the fourth one deals with the analysis, the
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Table 1
Geometrical parameters of the studied configurations

Lengths of the studied configurations

Number of bends Curved
length (m)

Straight
length (m)

Total length (m)

Hellically coiled system
3 0.596 0.295 0.891
9 1.788 0.935 2.723

15 2.981 1.585 4.566
21 4.173 2.230 6.403
27 5.365 2.875 8.240
33 6.557 3.521 10.078

Chaotic system
3 0.596 0.320 0.916
6 1.192 0.640 1.832
9 1.788 0.960 2.748

15 2.981 1.600 4.581
21 4.173 2.240 6.413
27 5.365 2.880 8.245
33 6.557 3.520 10.078

also made of 33 bends and 11 straight sections of 80 mm length
(Fig. 1b). The latter geometry is obtained by shifting the plane
of curvature of each bend by a ±90◦ angle with respect to the
neighboring ones. Different configurations, made up with 3–33
bends, were tested (Table 1).

2.2. Working fluid

In our previous works [15,16], water and saccharose Newto-
nian solutions were used as working fluids for Reynolds numbers
ranging from 30 to 13,000 (Table 2). In the present study, a purely
viscous non-Newtonian liquid is used, carboxymethyl cellulose
(CMC) 7H4C at a mass concentration of 1%. The CMC solu-
tion is made in small batches of 20 l. The rheology of each batch
is measured with a Weissenberg rheometer at imposed shear
rate using a cone and plate measurement system. All batches
are mixed in a reservoir. The global fluid rheology is regularly
controlled and the CMC solution is changed when its rheology
begins to vary. At a temperature equal to 20 ◦C, the rheologic
behavior of all the solutions follows, on average, an Ostwald-
de-Waele law, whose consistency, k, is equal to 0.96 Pa sn, the
flow behavior index, n, being equal to 0.52 (Fig. 2). During the
residence time distribution (RTD) experiments, the working liq-

Fig. 2. CMC rheological behavior.

uid is not recycled so as to avoid any modification of its physical
properties, but is instead stored in a second reservoir.

2.3. Determination of the residence time distribution

The RTD of a passive tracer was obtained using a conduc-
timetric method with two measurement points [15,16]. The
concentration of an injected tracer was sampled, as a func-
tion of time, at both the inlet and the outlet of the geometry
under study. To ensure a uniform tracer concentration at the
entrance of the twisted pipe, the tracer injection was followed
by a seven-element Sulzer SMX static mixer, which extends the
time distribution of the tracer at the inlet in order to allow a
correct sampling of the entrance concentration signal.

The passive tracer was detected using two specially designed
conductimetric cells made up of two semicylindrical nickel
plates insulated from each other and having the same diameter as
the twisted pipe systems. Each sensor is connected to a variable-
frequency conductimeter (TACUSSEL CD 810). The frequency
of the applied alternating current between the two electrodes of
the conductimetric cells was fixed to 1 kHz in order to ensure a
linear relationship between the conductivity and the concentra-
tion of the tracer. The concentration curves at the inlet, C1(t),

T
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C

able 2
ydrodynamical parameters of the studied configurations

xperimental domain

ystem Number of bends

astelain et al. [15]
Helically coiled 3, 9, 15, 21, 27, 33
Chaotic 3, 9, 15, 21, 27, 33

astelain et al. [16]
Chaotic 3, 6, 9, 33
Chaotic 3, 6, 33
Viscosity of the liquid (Pa s) Re range

10−3 (water) 800–13000
10−3 (water) 800–13000

0.102–0.128 (saccharose) 30–200
0.012 (saccharose) 400–1700
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Fig. 3. Specific tracer conductivity vs. 2 mol l−1 NaCl concentration.

and at the outlet, C2(t), of the system are sampled at a frequency
varying between 7 and 60 Hz (depending on the flow rate) by
means of a data-acquisition device (AOIP SA 32) connected to
a personal computer for data processing.

After Li and Choplin [28], the lack of experimental data deal-
ing with residence time distribution of non-Newtonian fluids in
various industrially-used devices is mainly due to the difficulty
of finding a tracer which does not interact with the working fluid
in order to maintain the initial properties of the non-Newtonian
liquid. The used tracer must not alter the fluid and must have
a sufficient specific conductivity to be detected, which further-
more has to evolve linearly with the concentration.

The attempts with a NaOH solution, used as tracer for New-
tonian fluids, showed an important and immediate degradation
of the long and fragile CMC molecules. Different tracers were
tested. A 2 mol l−1 NaCl solution was found to be suitable,
avoiding any modification of the characteristics of the CMC
solution. The specific conductivity was measured using the same
conductimetric cell, but closed at the entrance and at the exit.
This specific conductivity evolution of the tracer solution versus
the NaCl concentration, presented in Fig. 3, is linear. In order
to reduce flow perturbation, the injected tracer viscosity has to
be adjusted to that of the CMC solution. The apparent viscosity
of a pseudoplastic liquid, such as the CMC solution used here-
after, varied as a function of the applied shear rate. Thus, the
viscosity of the tracer solution was adjusted to the mean value
o
E
c
N
t
s
H
t
d
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tion of its rheology was observed. The injected volume of NaCl
was about 2 cm3.

3. Modeling of the residence time distribution

In a previous work, Castelain et al. [15] used the axial dis-
persed plug flow model to characterize RTD curves of a New-
tonian liquid flowing through the same devices used here for
high Reynolds numbers (2500 ≤ Re ≤ 13000). For this Reynolds
numbers range, the flow in the chaotic twisted pipe arrangement
can be considered as fully chaotic in the whole section of the
apparatus [15,19]. In this case, the dispersed plug flow model
has been found suitable for a correct prediction of the RTD of
the liquid, both in the chaotic and in the helically coiled systems
[15], confirming previous experimental works dedicated to the
latter configuration [9,10,21].

As previously observed by Castelain et al. [15,16], for
Reynolds numbers less than about 2500, the agreement between
the plug flow with axial dispersion model and the experimental
RTD in the chaotic curved-pipe arrangement is not as satisfac-
tory as for Reynolds numbers greater than 2500, when using a
Newtonian fluid. This is mainly due to the tails of the exper-
imental RTD, which cannot be correctly predicted using the
dispersed plug flow model. These tails were also observed by
Jones and Young [29] in a theoretical investigation of dispersion
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f the CMC one (µ = 0.1 Pa s) using a viscous Newtonian liquid,
MKAROX HV 45, which is totally soluble in water. Rheologi-
al measurements of the CMC solution after the injection of the
aCl tracer have been made and showed that the tracer solu-

ion injection does not alter the properties of the initial CMC
olution. The use of a 50% w/w concentration of EMKAROX
V45 and NaCl 2 mol l−1 aqueous solution allowed to maintain

he desired apparent viscosity of the working fluid. After each
etermination of the RTD, the rheological properties of the fluid
ere checked, the CMC solution being changed if any modifica-
f a passive scalar in steady viscous flow through a twisted pipe
ubjected to chaotic advection. The flow can thus be considered
s a mixed regime in which islands of integrable trajectories
oexist within irregular regions [19,29]. The trajectories of fluid
articles do not instantaneously become fully chaotic as the fluid
nters the twisted pipe system. At the inlet, small regions where
he flow becomes less and less regular appear. They spread along
he flow path to finally sample the whole cross-section. The tran-
ition between these asymptotic flow regimes is characterized
y the coexistence of chaotic zones with regular parts; this com-
etition induces tails on the RTD curves. Thus, for Reynolds
umbers less than about 2500, the experimental RTD of a New-
onian liquid was modeled using a plug flow with axial dispersion
art that exchanges mass with stagnant region [16]. This model
s expressed by the two following differential equations [30]:

ax
∂2C

∂z2 − W̄
∂C

∂z
= f

∂C

∂t
+ (1 − f )

∂C∗

∂t
(1)

1 − f )
∂C∗

∂t
= K(C − C∗) (2)

is the tracer concentration in the flowing part of the device in
hich W̄ the mean velocity and Dax the axial dispersion coef-
cient. C* is the tracer concentration in the stagnant zone, f the
raction of volume subjected to plug flow with axial dispersion,
nd K is the mass transfer coefficient between the flowing vol-
me and the stagnant region.

The characteristic parameters of this flow model are deter-
ined using curve-fitting in the time domain [31,32]. This

ppears to be the most accurate way to identify the different
arameters involved in a given flow model from measurement
f tracer input and response signals [33]. This method is based on
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the comparison of the experimental concentration outlet curve
and that calculated, in the time domain, using the inlet curve
concentration signal and the transfer function of the flow model.
The inlet, C1(t), and outlet, C2(t), concentration curves are first
normalized to ensure exact satisfaction of the tracer balance, and
then expressed in terms of Fourier series. The resolution of Eqs.
(1) and (2), using the Laplace transform, allows the determina-
tion of the transfer function, F (s) = C2calc(s)/C′

1(s), between
Laplace transforms of the normalized calculated outlet signal
and the experimental inlet curve, given by:

F (s) =
2β1/2 exp

{
1
2 [PeL − β1/2]

}
(PeL + β1/2) − (PeL − β1/2) exp{−β1/2} (3)

with β = Pe4
L + 4sγPeL t̄s where t̄s is the mean residence time

of the fluid in the system; γ = f + (G(1 − f )/t̄s(1 − f )s + G);
G = KL/W̄ . PeL = W̄L/Dax is the Péclet number in the flow-
ing part of the device of total length L.

This model involves four parameters, t̄s, G, f and PeL, the
optimization of which is very difficult without a good initial
estimate. The complete procedure is described in Castelain et al.
[16]. The predicted temporal normalized response concentration
curve, C′

2calc(t), can thus be calculated using the definition of the
transfer function in the Fourier domain and the normalized inlet
signal, C′

1(t):

F

∫

ω

w

c
R

R

RMS, which is a function of the four parameters of the model, is
minimized using the Rosenbrook optimization algorithm [34].

4. Results and discussion

For non-Newtonian fluids, the generalized Reynolds number
is established so that the relation between the friction factor
and the Reynolds number for non-Newtonian fluids remains the
same as that for laminar isothermal flow of Newtonian fluids
[26]. The relation between the friction factor and the Reynolds
number for laminar isothermal flow of Newtonian fluids in ducts
is given by:

Cf

2
= 2τw

ρW̄2 = 2

ρW̄2

D	P

4L
= ξ

Re
(6)

Fig. 5. An example of curve-fitting in time domain using the two models (33-
bend chaotic system): (a) plug flow model with axial dispersion; (b) dispersed
plug flow model exchanging mass with a stagnant zone.
(iω) =
2T

0 C′
2calc(t) exp(−iωt) dt∫ 2T

0 C′
1(t) exp(−iωt) dt

(4)

being the pulsation of the Fourier series and 2T the time in
hich the tail of the response signal, C′

2(t), vanishes.
The experimental, C′

2(t), and predicted, C′
2calc(t), response

urves are compared by evaluating the root mean square error,
MS, between these two signals [32]:

MS =
[∫ 2T

0 [C′
2(t) − C′

2calc(t)]2 dt∫ 2T

0 [C′
2(t)]2 dt

]
(5)

Fig. 4. Friction factor vs. Reynolds number.
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where Cf is the friction factor, 	P the pressure drop, L the length
of the channel, W̄ the mean flow velocity and ξ is a dimensionless
geometrical parameter whose value for different ducts configu-
rations is given by Shah and London [35]. The Dean number for
non-Newtonian fluids is defined as:

Dng = Reg

√
D

Rc
(7)

In order to determine the ξ factor of the two configurations,
the pressure drops, for a Newtonian fluid, have been measured
using a differential Schlumberger pressure sensor. The principle
of measurement is as follows: the upstream and downstream
pressures are transmitted to the sensor by a secondary fluid
(water). These two pressures are transmitted to two separating
membranes. The resulting pressure, hence the differential pres-
sure, is transmitted to a third membrane, called measurement
membrane, which supports the detector. The latter measures a
magnetic core micro-displacement placed in the magnetic field.
The calibration consists in comparing, for example, the signal of
the sensor with that obtained using a differential water column
manometer. The friction factor, Cf, is given in Fig. 4 as a func-
tion of the Reynolds number for the two studied configurations
having 33 bends and for a straight tube and a helical coil inves-
t
t
h
s
i
t
t

F
c
w

[26]:

Reg = 81−n

[
4n

3n + 1

]n
ρW̄2−nDn

k
(8)

Measurements have been realized for various configurations
of a chaotic and helical system for a range of generalized
Reynolds numbers between 30 and 260. As in the study of
the residence time distribution for Newtonian fluids for small
Reynolds numbers, the agreement between the plug flow with
axial dispersion model and the experimental residence time dis-
tributions is not satisfactory. To take into account the tails of the
experimental RTD, we chose to use a plug flow model with axial
dispersion part that exchanges mass with a stagnant region. An
example of curve-fitting is given in Fig. 5 for a 33-bend config-
uration system. The RMS is equal to 21.8% if the plug flow with

Fig. 7. Péclet number based on the diameter vs. Reynolds number for different
configurations: (a) helically coiled configuration; (b) chaotic configuration.
igated by Singh and Mishra [36]. For Reynolds numbers lower
han 110, the friction factor for the two configurations studied
ere is of the same order of magnitude as that obtained in a
traight tube. This is in agreement with other correlations exist-
ng for the friction factor in helical coils. One can thus consider
hat the factor ξ is the same as for a straight tube and thus equal
o 1. In this case, the generalized Reynolds number is given by

ig. 6. Accuracy of the two flow models for the prediction of RTDs in chaotic
onfiguration. PAD: plug flow with axial dispersion model; PADSZ: plug flow
ith axial dispersion model exchanging mass with a stagnant zone.
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axial dispersion model is used (Fig. 5a), whereas it is reduced to
5% with the dispersed plug flow model exchanging mass with
a stagnant zone (Fig. 5b). The use of the plug flow model with
axial dispersion part that exchanges mass with a stagnant region
allows to obtain a root mean square error between the experi-
mental and modeled outlet signals lower than 10% (Fig. 6).

The variation of the Péclet number based on the pipe diame-
ter, PeD = (W̄D/Dax), versus the Reynolds number in chaotic
or helical configurations is given in Fig. 7. In helical configu-
ration, the Péclet number decreases with the number of bends
constituting the system, but seems to be only slightly dependent
on the Reynolds number, especially for Reg greater than 100.
The increase of the number of bends seems to enhance axial
dispersion.

In chaotic configuration, the Péclet number is globally stable
around a value of 0.8. Thus this parameter is not very sensitive

F
c

to the number of bends and to the Reynolds number, except for
the three bends configuration, for which the small length of the
system coupled with the chaotic mixing reduce axial dispersion.

The Péclet number based on the diameter is more important
in the chaotic geometry than in the helical one, particularly for
Reynolds numbers smaller than 100. As a high Péclet number
indicates a small axial dispersion, the dispersion is smaller in
chaotic configuration. In chaotic system, the reduction of the
axial dispersion is more pronounced because of the set-up of
chaotic trajectories in the flow. This phenomenon accounts for
an increase in transverse dispersion. The results are in agreement
with those obtained for Newtonian fluids by Castelain et al. [16].

Fig. 8 represents the evolution of the flow fraction in the two
systems versus Reynolds number. The flow fraction increases
with the number of bends in both configurations. The increase
of the system length induces better fluid mixing. In the two sys-
tems, the flow fraction increases with the Reynolds number up
to a Reynolds number around 100. Even if the secondary flow
is present for smaller Reynolds numbers, it is weaker. Conse-
quently, the particles located near the wall find it difficult to move
near the center of the section. The strength of the secondary
flow increases with the Reynolds number and helps particles
displacement. The comparison between the flow fraction in the
two configurations shows the reduction of the volume of the dead
zones, hence the mixing increase, for the chaotic configuration.
This enhancement is more and more important with the increase
o
v
c

P
o
d
t

ig. 8. Variation of the flow fraction vs. Reynolds number: (a) helically coiled
onfiguration; (b) chaotic configuration.

F
a

f the system length. In chaotic configuration, the maximum
alue is reached for a Reynolds number lower than in helicoı̈dal
onfiguration.

Fig. 9 presents the comparison between the variations of the
éclet number based on the pipe diameter for a Newtonian fluid
btained by Castelain et al. [15] and that measured for the pseu-
oplastic fluid. The values of the Péclet number are greater for
he non-Newtonian fluid, because of the local change in appar-

ig. 9. Comparison of the Péclet number in chaotic configuration for Newtonian
nd pseudoplastic fluids.
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ent viscosity which affects the secondary flow. For pseudoplastic
fluids, the apparent viscosity is reduced near the wall and higher
at the center of the cross section. Agrawal et al. [37] showed that
pseudoplasticity decreases the intensity of the secondary flow. In
the plane of curvature, the axial velocity profile exhibits a single
peak shifted toward the concave wall due to centrifugal force.
When the flow behavior index decreases, the shift of the axial
velocity profile toward the concave wall is more pronounced,
thereby inducing a globally more flatten velocity profile, hence
a smaller axial dispersion, than for the Newtonian fluid. The
maximum axial velocity decreases as the flow behavior index is
reduced, so that the pseudoplastic fluids cause the attenuation
of the secondary flow in the center of the tube and the increase
of the secondary flow near the wall. The works of Singh and
Nigam [25] and Ranade and Ulbrecht [27] also emphasized the
acceleration of the secondary flow near the wall which reduces
axial dispersion.

5. Conclusion

The experimental evaluation of the residence time distri-
bution in a helical system and in a spatially chaotic system
associated with the use of a plug flow model with axial disper-
sion part exchanging mass with a stagnant region, has allowed
the determination of an effective axial dispersion coefficient in
t
f
t
c
n
p
g
d
r
o
t
l
v
c
a
s
i
i
fl
i
c

c
l
t
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